Composite quadrature formulae for the approximation of wavelet coefficients of piecewise smooth and singular functions

نویسندگان

  • Daan Huybrechs
  • Stefan Vandewalle
چکیده

The computation of wavelet coefficients of a function typically requires the computation of a large number of integrals. These integrals represent the inner product of that function with a wavelet function on different scales, or with the corresponding scaling function on a fine scale. We develop quadrature rules for those integrals that converge fast for piecewise smooth and singular functions. They do not require the evaluation of the scaling function, and the convergence does not depend on the smoothness of that function. The analysis and computation is based completely on the filter coefficients that define the scaling function. An application is presented from the field of electromagnetics, involving the inner product of a singular function with two-dimensional tensor-product wavelets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

Application of CAS wavelet to construct quadrature rules for numerical ‎integration‎‎

In this paper‎, ‎based on CAS wavelets we present quadrature rules for numerical solution‎ ‎of double and triple integrals with variable limits of integration‎. ‎To construct new method‎, ‎first‎, ‎we approximate the unknown function by CAS wavelets‎. ‎Then by using suitable collocation points‎, ‎we obtain the CAS wavelet coefficients that these coefficients are applied in approximating the unk...

متن کامل

Some choices of moments of refinable function and applications

We propose a recursive formula for moments of scaling function and sum rule. It is shown that some quadrature formulae has a higher degree of accuracy under proposed moment condition. On this basis we obtain higher accuracy formula for wavelet expansion coefficients which are needed to start the fast wavelet transform and estimate convergence rate of wavelet approximation and sampling of smooth...

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

Image Restorations: a Wavelet Frame Based Model for Piecewise Smooth Functions and Beyond

In this paper, we propose a new wavelet frame based image restoration model that explicitly treats images as piecewise smooth functions. It estimates both the image to be restored and its singularity set. It can well protect singularities, which are important image features, and provide enough regularization in smooth regions at the same time. This model penalizes the l2norm of the wavelet fram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004